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Convolutional neural network based
fault detection for traction motor

Huizhong Wang2, Linhan Qiao2, 3, Jianhai Li2,

Keke He2

Abstract. In propose of the feature learning for condition monitoring of inner ring and outer

ring of traction motor, this paper had the method of fault detection of convolutional neural network.

The goal of this approach is to autonomously learn useful features for bearing fault detection. In

this method, the one-dimensional vibration signals are extracted by convolution and maximization

pooling. Then the input full connection layer is used for fault classi�cation. Compared with the

traditional Back propagation neural network, Supporting vector machine with Principal component

analysis, the results showed that the method in this approach has a simple structure and can achieve

good results in a short period of time for medium sample data. The former achieves an accuracy

of 97.71 percent on average and the latter achieves an accuracy of 88.24 percent.
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1. Introduction

Currently, traction motors are widely used. To reduce operational costs, prolong
the lifetime of machines and enhance operational uptime, condition monitoring(CM)
is required [1]. Convolutional Neural Network (CNN) is a method which is widely
used in Feature Learning(FL). In this paper, according to the one-dimensional data
of the traction motor vibration signal, convolution neural network can adopt the
end-to-end feature extraction method to solve the problem of feature extraction
inaccuracy and improve the accuracy of motor fault diagnosis [2]. Comparing with
traditional motor fault diagnosis algorithm, it can reduce the complexity of algorithm
model and the computational cost.

The remainder of this article is as follows. In the next section a literature review
is given. Subsequently, the data set is discussed. Then, the feature-engineering
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based approach is presented. Consequently, the feature-learning based approach
is discussed. Next, the results of former system and the last are evaluated and
compared. Finally, the conclusions are presented together with possible future work
for the presented research.

2. Related literature

Vibration patterns depend on the machine's condition, and are therefore very
suitable to detect speci�c conditions. For example, imbalance, which is caused by
the shift between the principal axis of inertia and the axis of rotation, results in a
high amplitude at the rotation frequency of the machine in frequency spectrum [3].
Other faults which can be detected

Table 1. Vibration patterns of motor condition

Motor conditions Vibration patterns

Stator fault f0, 2f0, 4f0, 6f0......

Bearing outer ring fault 0.5Z n
60

(1− d
D

cosβ)

Bearing inner ring fault 0.5Z n
60

(1 + d
D

cosβ)

Table 2. Dimensions of the variables in table 1

Variable Dimensions

f0 Power frequency

Z Number of balls or
rollers

n Speed r/min

β Bearing pressure angle

in a similar manner are damaged raceways, since these faults generate a peak at
a speci�c fundamental frequency [4].

To summarize, several di�erent features with a speci�c goal can be extracted from
vibration data. However, a human expert is still required to interpret the features
to identify di�erent machine conditions or anomalies. Machine learning is required
to automate this interpretation process.

Machine learning for fault detection focuses on two major topics, i.e.: anomaly
detection and fault/condition classi�cation. Anomaly detection is process of identi-
fying measurements that do not conform to other patterns of the data set [5].

Often, features, as discussed in the previous sub-section, are used by algorithms
such as one-class Supporting vector machines (SVM), Gaussian distribution �tting,
clustering in combination with principal component analysis, hidden markov models
and neural networks [5-8].



CONVOLUTIONAL NEURAL NETWORK 369

In [9], the authors propose that the BP neural network nonparametric model
replaces the parametric model of ARMA model to extract the structural physical
parameters. However, the BP neural network has some problems such as slow learn-
ing speed and local minimum points.

Literature [10] proposed a modal parameter identi�cation method based on con-
tinuous wavelet transform and back propagation neural network, which can accu-
rately identify the modal parameters when the signal sampling time is very short,
and has strong practicability and shows a certain Anti-noise ability. Due to the
sudden change of the signal amplitude, the quality of the extended signal has some
in�uence on the estimation of the damping ratio. From the time it takes to extract
modal parameters, the lower the signal-to-noise ratio, the longer it takes to train a
neural network.

the author combines fuzzy theory and neural network to form fuzzy neural net-
work for on-line fault diagnosis, but ignores the problem caused by the cross-entropy
loss function of neural network.

In this paper, fault detection model is based on convolutional neural network(CNN)
. It has been proven successful in many domains . The CNN have several advan-
tages compared to other feature-learning techniques. First, similar to stacked SAOs,
CNN autonomously learn multiple levels of representations of the data through their
layered structure. This enables complex features to be learned . Second, a CNN is
an end-to-end learning system, therefore, only a single system has to be optimized.
Finally, CNNs are used to exploit the spatial structure in the data.

A CNN works as follow: given an input containing multiple channels, such as
several vibration signals combined, a CNN layer computes a similar transform as
the one in Eq.(1), with the di�erence that the adjustable parameters of the layer are
organized as a set of �lters (or �lter bank) and convolved over the input to produce
the layer's output. The output of a CNN layer is 3D tensor, which consists of a
stack of matrices called feature maps, and can be used as input to a higher level
layer of the CNN model. The weights in the �lter bank are shared over the input,
which e�ectively exploits the local spatial statistics, while reducing the number of
trainable parameters. The operation can be represented.

Xk = σ(WkXk−1 + bk) (1)

X
(m)
k = σ(

C∑
c=1

W
(c,m)
k ∗X(c)

k−1 +B
(m)
k ) (2)

In Eq.(2), the layer of the network is denoted with k as before, and the ∗ operator
is used for the 2D convolution of channel c = 1, · · · , C of the input Xk−1 and the

�lter W
(c,m)
k , which is responsible for the m − th output feature map X

(m)
K , where

m = 1, · · · ,M . The matrix B
(m)
k contains the bias weights. Finally, a nonlinear
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activation function σ is applied to the sum of convolutions to obtain the �nal output.

Fij = S(

n∑
i=1

n∑
j=1

(MijCij) + b1) (3)

Eq. (3) is the convolution calculation. Let the input layer be a matrix of convo-
lution kernels, where n is the kernel size of the convolution kernel. �lters indicates
the number of output convolution layers. In practice, many convolution layers are
output at a time. Strides indicates how long the convolution layer performs a scan
at the interval when scanning at the input layer. Padding refers to whether the edge
is scanned. If it is valid, only the known matrix is scanned. If it is same, the padding
is made according to the situation to make the output equal to input-size / strides.

After convoluted, the signal will be transmitted in a pooling layer. The pool-
ing layer usually functions to reduce the compression information and reduce the
dimension of the feature mapping. However, the most important information is re-
tained, which is equivalent to extracting the signal. The most commonly used For
max-pooling, that is, "pinch" within a given area, leave the maximum value, and
discard the other values. Average-pooling can also be used to leave the average.

In addition, Dropout is a strategy of reducing over-�tting. In order to prevent
some special weights from occurring, each node can participate in the network update
process and randomly cover part of the nodes during the neural network update
process.

Fully Connected Layer is a Multi-Layer Perceptron that uses the softmax acti-
vation function as the output layer. The nodes between layers are connected in two
by two. Its purpose is to classify using advanced features obtained from convolution
and pooling.

3. Methodology

Our methods for motor fault detection is described in this section. In order to
compare with traditional techniques discussed above, we performed experiments on
a data set which was created using the test set-up below.

3.1. Test set-up

A visualization of our set-up source(the Case Western Reserve University Bear-
ing Data Center Website) is shown in Fig.1 and the technical speci�cations are
summarized in Table 3.

Table 3. Technical speci�cations of the test set-up
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Fig. 1. The used set-up source

Property Value

Rotation speed 25HZ

Sample frequency 12000HZ

Accelerometer type IEPA

Accelerometer prod-
uct type

4534-B

DE drive end accelerometer
data

FE fan end accelerometer
data

The test stand consists of a 2 hp motor (left), a torque transducer/encoder (cen-
ter), a dynamometer (right), and control electronics (not shown). The test bearings
support the motor shaft. Vibration data was collected using accelerometers, which
were attached to the housing with magnetic bases. Accelerometers were placed at
the 12 o'clock position at both the drive end and fan end of the motor housing. Dur-
ing some experiments, an accelerometer was attached to the motor supporting base
plate as well. Vibration signals were collected using a 16 channel DAT recorder, and
were post processed in a Matlab environment. All data �les are in Matlab (*.mat)
format. Digital data was collected at 12,000 samples per second. Speed and horse-
power data were collected using the torque transducer/encoder and were recorded
by hand. Outer raceway faults are stationary faults, therefore placement of the fault
relative to the load zone of the bearing has a direct impact on the vibration response
of the motor/bearing system. In order to quantify this e�ect, experiments were con-
ducted for both fan and drive end bearings with outer raceway faults located at 3
o'clock (directly in the load zone), at 6 o'clock (orthogonal to the load zone), and
at 12 o'clock.
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3.2. Data set

For every condition, three kinds of data set were tested, i.e., healthy bearing,
outer ring fault bearing, inner ring fault bearing. The healthy bearing data set is
shown in Fig.2. and the other two fault data sets are similar as the healthy one.

In general, training data set needs to be independent and identically distributed.
In python environment, the data itself is subject to normal distribution and the co-
variance matrix is observed. The data is also found to be independent and unrelated
and therefore can be learned. Fig.3. is the healthy state of the fan side of all the
vibration data. Fig.4. for the healthy state and the fault state joint probability dis-
tribution, where the sub-map (a) healthy state and the inner fault joint probability
distribution, sub-map (b) for the normal state and the inner ring Fault, outer ring
joint probability distribution.

Fig. 2. Healthy bearing data set

Fig. 3. Fitting parametric distributions of healthy bearing data set
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Fig. 4. The joint distribution of three data sets. (a) The joint distribution of
Healthy data set and the inner fault of bearing data set. (b) The joint distribution

of three kinds of data sets

It can be seen from the Fig.4. that the joint probability distribution of the data
set is elliptic or ellipsoidal, so there is a positive de�nite diagonal matrix that makes
the data set relevant. In the next section, the feature learning ,applied on our CNN
is discussed in detail.

3.3. K-folds cross validation

For the collected datasets, the training set and the test set are divided by the
K-folds Cross Validation (K-CV) method, as shown in Fig.5 is a schematic diagram
of a common 10-folds cross-validation algorithm.

This method �rstly divides the training set and the test set, secondly, the training
set is divided into 10 parts, each of which is selected for training, and the remaining 1
part is used as the veri�cation set so that the veri�cation set traverses all the training
sets, and then the training result Integration, the method used here is to �nd the
mean. By cross-validation training neural network can learn from many directions,
to avoid falling into the saddle point. The hidden layer in CNN is relatively complex
with many saddle points. The descending direction of stochastic gradient descent
adopted is inde�nite, and it is easy to fall into the saddle point. This cross-validation
by K can solve the problem.

Fig. 5. 10-folds Cross Validation
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3.4. Feature learning

The feature learning based approach uses two pipeline system as depicted in Fig.6.
As can be seen, the binary classi�cation problem of balanced versus imbalanced
samples were already been solved e�ectively using pipeline one. Therefore, we reuse
this pipeline here. Nevertheless, for the detection of three or more speci�c bearing
conditions, a feature learning model is proposed, which forms the second pipeline.

Fig. 6. High level representation of the proposed feature-learning architecture.

Our proposed feature-learning approach is based on a convolutional neural net-
work. More speci�cally, a CNN model similar to the one proposed by Slavkovikj
et al.The CNN model was trained using Stochastic gradient descent SGD, the dif-
ferences with the mini batch gradient decent were shown in Eq.(4). And Eq. (5).

Dountil ‖θnew − θ‖22 < ε

{
θ ← θ − α 1

N

N∑
i=1

∇θL(Xi, Yi)

}
(4)

Dountilconverge

{
θ ← θ − α 1

NS

∑
i∈S
∇θL(Xi, Yi).S : mini− batch

}
(5)

There are many advantages as using SGD. First, larger batches compute more
accurate gradient estimates, but the returns are less than linear. Second, small
batch processing adds noise to the learning process, so there are some regularization
e�ects. It's helpful in jumping out of saddle points or local minima Third, as long
as no repeated samples are used, it will follow the gradient of minimizing the true
generalization error.

It has been shown that by using a deep architecture, i.e., a network with many
layers, the network becomes more robust to the variation in the data .
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4. Results

To assess the feature learning based approach, the evaluation metrics, the eval-
uation procedure, and the obtained results are discussed in this section.

4.1. Evaluation metrics

To quantify the performance of di�erent classi�ers, four error measurements are
calculated: accuracy, precision, recall and F1-score for which the Formulas can be
seen in Eqs.(6)-(9), with |TP | being the amount of true positive classi�cations; |TN |,
the amount of true negative classi�cations; |FP |, the amount of false positive clas-
si�cations, e.g. a false alarm, and |FN |, the amount of false negative classi�cations,
e.g. missed faults.

accuracy =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
(6)

precision =
|TP |

|TP |+ |FP |
(7)

recall =
|TP |

|TP |+ |FN |
(8)

f1− score = 2
precision ∗ recall
precision+ recall

(9)

Fig. 7. Data set heat map

4.2. Pipeline two results

The whole data set heat map is in Fig.7.The results achieved by pipeline two
are summarized in Tale 4. The data set is dimensioned by manifold algorithm and
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then input to SVM of nonlinear kernel function for classi�cation. This method is
convex optimization method and has many advantages of kernel method, but the
accuracy is lower. BP algorithm updates the weights and deviations of the network
by using the chain rule. Although the good classi�cation results can be obtained,
the gradient descent method itself easily leads to a local minimum. According to
the multi-directional learning of the cross_validation, the direction of stochastic
gradient decent and saddle point caused by multilayer neural network can be solved.
Based on Tensor�ow, it is also possible to quickly build a CNN model in a python
environment.

Table 4. Performance results of the two-pipeline system, which uses 10-folds cross validation,
executed 10 times. BPNN=BP neural network using SGD, SVM1=SVM using a linear kernel
(C=105), SVM2=SVM using a radial basis function kernel (C=10, γ = 0.3), CNN=CNN using

10-folds cross validation and SGD

Metric BPNN SVM1 SVM2 CNN

Accuracy 88.24%(σ=8.05%) 72.5%(σ=18.37%) 77.5%(σ=18.37%) 97.71%(σ=6.87%)

Precision 89.83%(σ=8.20%) 73.75%(σ=19.70%) 82.08%(σ=15.78%) 95.62%(σ =6.0%)

Recall 88.24%(σ=8.05%) 72.5%(σ=18.37%) 77.5%(σ=18.37%) 97.3%(σ =6.86%)

F1-score 86.73%(σ=8.12%) 73.12%(σ=19.01%) 79.73%(σ=16.98%) 95.03%(σ=6.47%)

5. Conclusion and future work

In this article feature learning is used in the form of CNN model, which is an
end-to-end machine learning system using 10-folds cross validation and stochastic
gradient decent. The above analysis shows that the proposed method reduces the
complexity of the traditional fault diagnosis algorithm to a certain extent and retains
a good accuracy and timeliness, which provides a basis for further on-line diagnosis
of motor faults. How to choose the proper method of pooling in the fault diagnosis
of motor and how to get the suitable learning step by linear search method are our
future concerns.
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